9,907 research outputs found

    General no-go condition for stochastic pumping

    Get PDF
    The control of chemical dynamics requires understanding the effect of time-dependent transition rates between states of chemo-mechanical molecular configurations. Pumping refers to generating a net current, e.g. per period in the time-dependence, through a cycle of consecutive states. The working of artificial machines or synthesized molecular motors depends on it. In this paper we give short and simple proofs of no-go theorems, some of which appeared before but here with essential extensions to non-Markovian dynamics, including the study of the diffusion limit. It allows to exclude certain protocols in the working of chemical motors where only the depth of the energy well is changed in time and not the barrier height between pairs of states. We also show how pre-existing steady state currents are in general modified with a multiplicative factor when this time-dependence is turned on.Comment: 8 pages; v2: minor changes, 1 reference adde

    Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    Get PDF
    It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers

    No current without heat

    Get PDF
    We show for a large class of interacting particle systems that whenever the stationary measure is not reversible for the dynamics, then the mean entropy production in the steady state is strictly positive. This extends to the thermodynamic limit the equivalence between microscopic reversibility and zero mean entropy production: time-reversal invariance cannot be spontaneously broken.Comment: To appear in the Journal of Statistical Physics (2002

    Nonequilibrium Linear Response for Markov Dynamics, II: Inertial Dynamics

    Full text link
    We continue our study of the linear response of a nonequilibrium system. This Part II concentrates on models of open and driven inertial dynamics but the structure and the interpretation of the result remain unchanged: the response can be expressed as a sum of two temporal correlations in the unperturbed system, one entropic, the other frenetic. The decomposition arises from the (anti)symmetry under time-reversal on the level of the nonequilibrium action. The response formula involves a statistical averaging over explicitly known observables but, in contrast with the equilibrium situation, they depend on the model dynamics in terms of an excess in dynamical activity. As an example, the Einstein relation between mobility and diffusion constant is modified by a correlation term between the position and the momentum of the particle

    Enstrophy dissipation in two-dimensional turbulence

    Full text link
    Insight into the problem of two-dimensional turbulence can be obtained by an analogy with a heat conduction network. It allows the identification of an entropy function associated to the enstrophy dissipation and that fluctuates around a positive (mean) value. While the corresponding enstrophy network is highly nonlocal, the direction of the enstrophy current follows from the Second Law of Thermodynamics. An essential parameter is the ratio Tk=γk/(νk2)T_k = \gamma_k /(\nu k^2) of the intensity of driving γk>0\gamma_k>0 as a function of wavenumber kk, to the dissipation strength νk2\nu k^2, where ν\nu is the viscosity. The enstrophy current flows from higher to lower values of TkT_k, similar to a heat current from higher to lower temperature. Our probabilistic analysis of the enstrophy dissipation and the analogy with heat conduction thus complements and visualizes the more traditional spectral arguments for the direct enstrophy cascade. We also show a fluctuation symmetry in the distribution of the total entropy production which relates the probabilities of direct and inverse enstrophy cascades.Comment: 8 pages, revtex

    Use of inadequate data and methodological errors lead to a dramatic overestimation of the water footprint of Jatropha curcas

    Get PDF
    In their recent article, Gerbens-Leenes et al. (1) calculated the water footprint (WF, the amount of water required to produce 1 GJ of energy) of several bioenergy crops. One of the most remarkable findings of this study was the very high water footprint of this species, which has serious management consequences. 

However, these results are in apparent contrast with recent findings on this species. We present evidence that several errors were made by the authors when calculating the water footprint of jatropha, which has lead to a dramatic overestimation. These errors include weaknesses concerning the data used for the calculation of the water footprint, as well as flaws in the calculation method, as we demonstrate in the letter. Based on peer-reviewed data, we furthermore provide a more correct, still rough, first estimate for the water footprint of this species, which would place it amongst the more water efficient bioenergy crops. 

&#xa

    Estimation of a joint model for the term structure of interest rates and the macroeconomy.

    Get PDF
    In this paper, we present a stylized continuous time model integrating the macroeconomy and the bond markets. We use this framework to estimate (real) interest rate policy rules using information contained in both macroeconomic variables (i.e. output and inflation) and in the term structure of interest rates. We extend the standard Kalman filter procedure in order to estimate this model efficiently. Application to the U.S. economy shows that this model is able to estimate the macroeconomic dynamics accurately and that the standard feedback rule only in observable factors is not valid within this framework. Moreover, we find that observable macroeconomic variables do not explain much of the term structure. However, (filtered) stochastic central tendencies of these macroeconomic variables do. Finally, both observable and non-observable factors determine the risk premia and hence the excess holding returns of the bonds.Interest rates; Model; Structure; Term structure of interest rates;

    Amplification of compressional MHD waves in systems with forced entropy oscillations

    Full text link
    The propagation of compressional MHD waves is studied for an externally driven system. It is assumed that the combined action of the external sources and sinks of the entropy results in the harmonic oscillation of the entropy (and temperature) in the system. It is found that with the appropriate resonant conditions fast and slow waves get amplified due to the phenomenon of parametric resonance. Besides, it is shown that the considered waves are mutually coupled as a consequence of the nonequilibrium state of the background medium. The coupling is strongest when the plasma β1\beta \approx 1. The proposed formalism is sufficiently general and can be applied for many dynamical systems, both under terrestrial and astrophysical conditions.Comment: 14 pages, 4 figures, Accepted to Physical Review

    Action-based effects on music perception

    Get PDF
    The classical, disembodied approach to music cognition conceptualizes action and perception as separate, peripheral processes. In contrast, embodied accounts of music cognition emphasize the central role of the close coupling of action and perception. It is a commonly established fact that perception spurs action tendencies. We present a theoretical framework that captures the ways in which the human motor system and its actions can reciprocally influence the perception of music. The cornerstone of this framework is the common coding theory, postulating a representational overlap in the brain between the planning, the execution, and the perception of movement. The integration of action and perception in so-called internal models is explained as a result of associative learning processes. Characteristic of internal models is that they allow intended or perceived sensory states to be transferred into corresponding motor commands (inverse modeling), and vice versa, to predict the sensory outcomes of planned actions (forward modeling). Embodied accounts typically refer to inverse modeling to explain action effects on music perception (Leman, 2007). We extend this account by pinpointing forward modeling as an alternative mechanism by which action can modulate perception. We provide an extensive overview of recent empirical evidence in support of this idea. Additionally, we demonstrate that motor dysfunctions can cause perceptual disabilities, supporting the main idea of the paper that the human motor system plays a functional role in auditory perception. The finding that music perception is shaped by the human motor system and its actions suggests that the musical mind is highly embodied. However, we advocate for a more radical approach to embodied (music) cognition in the sense that it needs to be considered as a dynamical process, in which aspects of action, perception, introspection, and social interaction are of crucial importance
    corecore